How do you prove #(sin 2x) / (1 + cos2x) = tan x#?

1 Answer
Mar 20, 2016

see explanation

Explanation:

Manipulating the left side using#color(blue)" Double angle formulae " #

#• sin2x = 2sinxcosx #

#• cos2x = cos^2x - sin^2x #

and using # sin^2x + cos^2x = 1 " we can also obtain " #

# cos2x = (1 - sin^2x) - sin^2x = 1 - 2sin^2x #

and # cos2x = cos^2x - (1 - cos^2x ) = 2cos^2x - 1 #

#rArr(sin2x)/(1+cos2x) = (2sinxcosx)/(1+2cos^2x-1) = (2sinxcosx)/(2cos^2x)#

#= (cancel(2) sinx cancel(cosx))/(cancel(2) cancel(cosx) cosx)= (sinx)/(cosx) = tanx = " right side " #