How do you prove #(sin 2x) / (1 + cos2x) = tan x#?
1 Answer
Mar 20, 2016
see explanation
Explanation:
Manipulating the left side using
#color(blue)" Double angle formulae " #
#• sin2x = 2sinxcosx #
#• cos2x = cos^2x - sin^2x # and using
# sin^2x + cos^2x = 1 " we can also obtain " #
# cos2x = (1 - sin^2x) - sin^2x = 1 - 2sin^2x # and
# cos2x = cos^2x - (1 - cos^2x ) = 2cos^2x - 1 #
#rArr(sin2x)/(1+cos2x) = (2sinxcosx)/(1+2cos^2x-1) = (2sinxcosx)/(2cos^2x)#
#= (cancel(2) sinx cancel(cosx))/(cancel(2) cancel(cosx) cosx)= (sinx)/(cosx) = tanx = " right side " #