How do you prove #tan p + cot p = 2 csc 2 p#?

1 Answer

This is true #tan p+cot p=2 csc 2p# see the explanation

Explanation:

the given #tan p+cot p=2 csc 2p#
start from left side
#sin p/cos p+cos p/sin p=2 csc 2p#

#sin p/cosp*sinp/sinp+cos p/sin p *cos p/cos p=2 csc 2p#

#sin^2 p/(sin p cos p)+cos^2p/(sin p cos p)=2 csc 2p#

from #sin^2p+cos^2p=1# equation becomes
#(sin^2 p+cos^2p)/(sin p cos p)=2 csc 2p#

#1/(sin p cos p)=2 csc 2p#

#1/(sin p cos p)*2/2=2 csc 2p#
#2/(2sin p cos p)=2 csc 2p#

From #sin 2p=2 sin p cos p# equation becomes
#2/(sin 2p)=2 csc 2p#

#2*(1/(sin 2p))=2 csc 2p#
Take note: #csc 2p=1/(sin 2p)#
#2 csc 2p=2 csc 2p#