How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Bdub Mar 9, 2018 See Below Explanation: Use the Property : #color(blue)(sin^2x+cos^2x=1# #LHS : (sinx-cosx)/(sinx+cosx)# #=(sinx-cosx)/(sinx+cosx)* (sinx+cosx)/(sinx+cosx)#-> multiply by conjugate #=(sin^2x-cos^2x)/(sin^2x+2sinxcosx+cos^2x)# #=(sin^2x-[1-sin^2x])/([sin^2x+cos^2x]+2sinxcosx)# #=(sin^2x-1+sin^2x)/(1+2sinxcosx)# #=(2sin^2x-1)/(1+2sinxcosx)# #=RHS# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #tan^2x/(secx+1)= (1-cosx)/cosx#? See all questions in Proving Identities Impact of this question 54864 views around the world You can reuse this answer Creative Commons License