How do you rationalize the denominator and simplify #1 / (1+sqrt3-sqrt5)#?
1 Answer
Explanation:
We will use the difference of squares identity twice:
#a^2-b^2=(a-b)(a+b)#
Let us first multiply numerator and denominator by:
#1+sqrt(3)+sqrt(5)#
as follows:
#1/(1+sqrt(3)-sqrt(5))#
#= (1+sqrt(3)+sqrt(5))/((1+sqrt(3)-sqrt(5))(1+sqrt(3)+sqrt(5)))#
#= (1+sqrt(3)+sqrt(5))/(((1+sqrt(3))-sqrt(5))((1+sqrt(3))+sqrt(5)))#
#=(1+sqrt(3)+sqrt(5))/((1+sqrt(3))^2-(sqrt(5))^2)#
#=(1+sqrt(3)+sqrt(5))/((1+2sqrt(3)+3)-5)#
#=(1+sqrt(3)+sqrt(5))/(2sqrt(3)-1)#
Then multiply numerator and denominator by
#=((1+sqrt(3)+sqrt(5))(2sqrt(3)+1))/((2sqrt(3)-1)(2sqrt(3)+1))#
#=((1+sqrt(3)+sqrt(5))(2sqrt(3)+1))/((2sqrt(3))^2-1^2)#
#=1/11 (1+sqrt(3)+sqrt(5))(2sqrt(3)+1)#
#=1/11 (2sqrt(3)(1+sqrt(3)+sqrt(5)) + (1+sqrt(3)+sqrt(5)))#
#=1/11 ((2sqrt(3)+6+2sqrt(15)) + (1+sqrt(3)+sqrt(5)))#
#=1/11 (7 + 3sqrt(3)+sqrt(5)+2sqrt(15))#