How do you rationalize the denominator and simplify #1/(sqrt3 - sqrt5 - 2)#?
1 Answer
#1/(sqrt(3)-sqrt(5)-2) = -10/47-4/47sqrt(15)+7/47sqrt(3)-1/47sqrt(5)#
Explanation:
Multiply numerator and denominator by:
#(sqrt(3)+sqrt(5)-2)(sqrt(3)-sqrt(5)+2)(sqrt(3)+sqrt(5)+2)#
First note that:
#(sqrt(3)-sqrt(5)+2)(sqrt(3)+sqrt(5)+2)#
#=((sqrt(3)+2)-sqrt(5))((sqrt(3)+2)+sqrt(5))#
#=(sqrt(3)+2)^2-(sqrt(5))^2#
#=2+4sqrt(3)+4-5#
#= 1+4sqrt(3)#
Similarly:
#(sqrt(3)-sqrt(5)-2)(sqrt(3)+sqrt(5)-2)#
#=((sqrt(3)-2)-sqrt(5))((sqrt(3)-2)+sqrt(5))#
#=(sqrt(3)-2)^2-(sqrt(5))^2#
#=2-4sqrt(3)+4-5#
#= 1-4sqrt(3)#
So the denominator becomes:
#(1-4sqrt(3))(1+4sqrt(3))=1^2-(4sqrt(3))^2=1-48=-47#
Meanwhile, the numerator becomes:
#(sqrt(3)+sqrt(5)-2)(1+4sqrt(3))#
#=sqrt(3)+sqrt(5)-2 + 4sqrt(3)(sqrt(3)+sqrt(5)-2)#
#=sqrt(3)+sqrt(5)-2+12+4sqrt(15)-8sqrt(3)#
#=10+4sqrt(15)-7sqrt(3)+sqrt(5)#
So:
#1/(sqrt(3)-sqrt(5)-2) = (10+4sqrt(15)-7sqrt(3)+sqrt(5))/(-47)#
#=-10/47-4/47sqrt(15)+7/47sqrt(3)-1/47sqrt(5)#