How do you rationalize the denominator and simplify #2/(sqrt6-sqrt5)#?
1 Answer
Apr 10, 2017
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
Using this with
#2/(sqrt(6)-sqrt(5)) = (2(sqrt(6)+sqrt(5)))/((sqrt(6)-sqrt(5))(sqrt(6)+sqrt(5)))#
#color(white)(2/(sqrt(6)-sqrt(5))) = (2sqrt(6)+2sqrt(5))/((sqrt(6))^2-(sqrt(5))^2)#
#color(white)(2/(sqrt(6)-sqrt(5))) = (2sqrt(6)+2sqrt(5))/(6-5)#
#color(white)(2/(sqrt(6)-sqrt(5))) = (2sqrt(6)+2sqrt(5))/1#
#color(white)(2/(sqrt(6)-sqrt(5))) = 2sqrt(6)+2sqrt(5)#