How do you rationalize the denominator and simplify #(7sqrt8)/(4sqrt56)#?

2 Answers
Apr 11, 2018

Answer:

# sqrt7/4#

Explanation:

#(7sqrt8)/(4sqrt56) xx sqrt56/sqrt56#

#= (7sqrt8xx sqrt56)/(4xx56)#

#= (7sqrt(8xx 8xx7))/(4xx56)#

#= (7 xx 8 sqrt7)/(4xx56)#

# = sqrt7/4#

Apr 11, 2018

Answer:

#sqrt7/4#

Explanation:

#(7 sqrt 8)/(4 sqrt 56)#

#:.=(7 sqrt(2*2*2))/(4 sqrt(14*4))#

#sqrt2*sqrt2=2#

#:.=(14 sqrt2)/(8 sqrt14)#

#:.=(14 sqrt2)/(8 sqrt14)xx(8 sqrt14)/(8 sqrt14)#

#:.=(cancel 112^1 sqrt 28)/cancel 896^8#

#:.=(sqrt 28)/8#

#:.=sqrt(2*2*7)/8#

#:.=(2 sqrt 7)/8#

#:.=sqrt 7/4#