How do you reduce to lowest terms #(2x^2 - 5x + 3)/(2x^2-x-3)#?
2 Answers
Explanation:
#"Factorise numerator and denominator"#
#"The factors of + 6 which sum to - 5 are - 3 and - 2"#
#2x^2-2x-3x+3larrcolor(blue)"split the middle term"#
#=2x(x-1)-3(x-1)larrcolor(blue)"factor by grouping"#
#=(x-1)(2x-3)#
#• " denominator "2x^2-x-3#
#"The factors of - 6 which sum to - 1 are - 3 and + 2"#
#2x^2+2x-3x-3#
#=2x(x+1)-3(x+1)#
#=(x+1)(2x-3)#
#rArr(2x^2-5x+3)/(2x^2-x-3)#
#=((x-1)cancel((2x-3)))/((x+1)cancel((2x-3))#
#=(x-1)/(x+1)#
#"with restriction "x!=-1#
Explanation: