.
#y=sqrt(x+sqrt(x^2+1))#
#y=(x+sqrt(x^2+1))^(1/2)#
Let's let #u=x+sqrt(x^2+1)=x+(x^2+1)^(1/2)#
And let's let #z=x^2+1#
#dz=2xdx#
Now, we substitute in #u#
#u=x+z^(1/2)#
Take the derivative of both sides:
#du=dx+1/2z^(-1/2)dz#
Substitute back for #z# and #dz#:
#du=dx+1/2(x^2+1)^(-1/2)(2xdx)#
Divide both sides by #dx#:
#(du)/dx=1+x/sqrt(x^2+1)#
#y=u^(1/2)#
#dy/(du)=1/2u^(-1/2)#
The Chain Rule says:
#dy/dx=dy/(du)*(du)/dx#
Let's plug them in:
#dy/dx=1/2u^(-1/2)(1+x/sqrt(x^2+1))#
Let's substitute back for #u#:
#dy/dx=1/2(x+sqrt(x^2+1))^(-1/2)(1+x/sqrt(x^2+1))#
#dy/dx=(1/(2sqrt(x+sqrt(x^2+1))))((sqrt(x^2+1)+x)/sqrt(x^2+1))#
Now, if we multiply the right had side by:
#(sqrt(sqrt(x^2+1)-x))/(sqrt(sqrt(x^2+1)-x))#
we get:
#dy/dx=((sqrt(sqrt(x^2+1)-x))(sqrt(x^2+1)+x))/((sqrt((x^2+1)-x^2))(2sqrt(x^2+1))#
#dy/dx=((sqrt(sqrt(x^2+1)-x))sqrt((sqrt(x^2+1)+x)^2))/(2sqrt(x^2+1))#
#dy/dx=((sqrt(sqrt(x^2+1)-x))sqrt(2x^2+2xsqrt(x^2+1)+1))/(2sqrt(x^2+1))#
#dy/dx=sqrt(2x^2sqrt(x^2+1)+2x^3+2x+sqrt(x^2+1)-2x^3-2x^2sqrt(x^2+1)-x)/(2sqrt(x^2+1)#
#dy/dx=sqrt(cancelcolor(red)(2x^2sqrt(x^2+1))cancelcolor(red)(+2x^3)+2x+sqrt(x^2+1)cancelcolor(red)(-2x^3)cancelcolor(red)(-2x^2sqrt(x^2+1))-x)/(2sqrt(x^2+1)#
#dy/dx=sqrt(x+sqrt(x^2+1))/(2sqrt(x^2+1)#