How do you simplify # [(1 + sin theta)/cos theta] + [cos theta/(1 + sin theta)]#?
2 Answers
Explanation:
Multiply the fractions to achieve a common denominator.
#=[(1+sintheta)/costheta][(1+sintheta)/(1+sintheta)]+[costheta/(1+sintheta)][costheta/costheta]#
#=(1+2sintheta+sin^2theta)/(costheta(1+sintheta))+cos^2theta/(costheta(1+sintheta))#
#=(1+2sintheta+(sin^2theta+cos^2theta))/(costheta(1+sintheta))#
Recall the Pythagorean Identity
#=(2+2sintheta)/(costheta(1+sintheta))#
#=(2(1+sintheta))/(costheta(1+sintheta))#
#=2/costheta#
#=2sectheta#
Explanation:
Begin by writing the fractions as a single fraction by extracting the lowest common denominator
In this case# costheta(1 + sintheta)#
#rArr( (1 +sintheta)^2 + cos^2 theta)/(costheta(1+sintheta)# Expanding the numerator
#( (1+2sintheta+sin^2theta) + cos^2theta)/(costheta(1+sintheta))# using the identity
#(sin^2theta+cos^2theta=1)# then
# (1+2sintheta+1)/(costheta(1+sintheta)) =(2+2sintheta)/(costheta(1+sintheta))#
#=(2(1+sintheta))/(costheta(1+sintheta))=(2cancel((1+sintheta)))/(costhetacancel((1+sintheta)))#
#= 2/costheta=2sectheta#