How do you simplify #-(10xy^(-2))/(3x^(-4)y^3)#?

1 Answer
Sep 28, 2016

#=-(10x^5)/(3y^5)#

Explanation:

#rarr# Determine the sign
#rarr# simplify the numbers
#rarr# work with the variables and the indices

Recall: #x^-m = 1/x^m#

#-(10xy^(-2))/(3x^(-4)y^3) " "larr# sign and numbers are in the simplest form

#=-(10x xx x ^4)/(3y^3 xx y^2)" "larr# all positive indices

#=-(10x^5)/(3y^5)#

.