How do you simplify #(12a^7b^5)/(-3a^3b^2)#?

1 Answer
Dec 4, 2015

#=color(blue)(-4a^4b^3#

Explanation:

#(12a^7b^5)/(-3a^3b^2)#

# = color(blue)((cancel12/-cancel3)) * color(green)(((a^7b^5))/((a^3b^2))#

#=-4 * color(green)(((a^7b^5))/((a^3b^2))#

Now as per property
#color(blue)(a^m/a^n=a^(m-n)#

Applying the same to exponents of #a# and #b# in the expression:

#=-4 * color(blue)((a^(7-3)) *color(green)(( b^(5-2)))#

#=color(blue)(-4a^4b^3#