How do you simplify #(16r^3tz^5)/(-4rt^3z^2)#?

1 Answer
Mar 4, 2018

#-4r^2t^-2z^3# or #(-4r^2z^3)/t^2#

Explanation:

We have #(16r^3tz^5)/(-4rt^3z^2)#

We can write that as:

#16/-4*r^3/r*t/t^3*z^5/z^2#

According to a law of indices, #a^n/a^m=a^(n-m)#. So we can write the above as:

#=-4r^(3-1)t^(1-3)z^(5-2)#

#=-4r^2t^-2z^3# or #(-4r^2z^3)/t^2#