How do you simplify #(16sqrt21) / (2sqrt7)#?

2 Answers
May 9, 2018

Answer:

#8sqrt3#

Explanation:

#"using the "color(blue)"law of radicals"#

#•color(white)(x)sqrta/sqrtbhArrsqrt(a/b)#

#rArr16/2xxsqrt21/sqrt7=8xxsqrt(21/7)=8sqrt3#

May 9, 2018

Answer:

#(16sqrt21)/(2sqrt7)=13.856#

Explanation:

Given -

#(16sqrt21)/(2sqrt7)#

#16/2xxsqrt21/sqrt7#

#16/2xx(sqrt21)^2/(sqrt7)^2#

#16/2xx21/7#

#8xxsqrt3=8 xx 1.732=13.856#

#(16sqrt21)/(2sqrt7)=13.856#