How do you simplify #(16x^2)/y^4* (5x^2)/y^2#?

1 Answer
Aug 8, 2015

Answer:

#=color(blue)(80 * x^(4)* y^(-6)#

Explanation:

#((16x^2)/y^4) * ((5x^2)/y^2)#

  • By property #color(blue)(1/a = a^-1#
    Applying the above property to exponents of #y# in the denominator.

#=16x^2 y^-4* 5x^2 y^-2#

#=(16 * 5) * (x^2 * x^2) * ( y^-4* y^-2)#

  • As per property
    #color(blue)(a^m *a^n = a^(m+n)#

Applying the same property to the exponents of #x# and #y# in the expression
#=80 * (x^(2+2)) * ( y^(-4 -2))#

#=color(blue)(80 * x^(4)* y^(-6)#