How do you simplify 2√3 (√3 - 1 )?

3 Answers
Jul 18, 2018

Answer:

See a solution process below:

Explanation:

Expand the term in parenthesis by multiplying each term within the parenthesis by the term outside the parenthesis:

#color(red)(2sqrt(3))(sqrt(3) - 1) =>#

#(color(red)(2sqrt(3)) xx sqrt(3)) - (color(red)(2sqrt(3)) xx 1) =>#

#color(red)(2)(sqrt(3))^2 - 2sqrt(3) =>#

#(color(red)(2) xx 3) - 2sqrt(3) =>#

#6 - 2sqrt(3)#

#2\sqrt3(\sqrt3-1)#

#=(2\sqrt3)\sqrt3-2\sqrt3#

#=2(\sqrt3\sqrt3)-2\sqrt3#

#=2(3)-2\sqrt3#

#=6-2\sqrt3#

Jul 18, 2018

Answer:

#6-2sqrt3#

Explanation:

Distributing #2sqrt3# to the parenthesis, we now have

#2color(blue)(sqrt3sqrt3)-2sqrt3#

This simplifies to

#2*color(blue)3-2sqrt3#

#=>6-2sqrt3#

Hope this helps!