How do you simplify #(2+5i)/(5+4i)#?

Treat #i# as an imaginary number,

1 Answer
Nov 26, 2016

The answer is #=30/41+(17i)/41#

Explanation:

If you want to simplify a quotient of complex numbers , multiply numerator and denominator by the conjugate of the denominator.

#z=z_1/z_2=(z_1barz_2)/(z_2barz_2)#

The conjugate of #(a+ib)# is #(a-ib)#

And #i^2=-1#

Here, #z_1=2+5i# and #z_2=5+4i#

So #(2+5i)/(5+4i)=((2+5i)(5-4i))/((5+4i)(5-4i))#

#=(10-8i+25i-20i^2)/(25-16i^2)#

#=(30+17i)/(41)#

#=30/41+(17i)/41#