How do you simplify #(24x^2)/(12x^5)#?

1 Answer
Feb 16, 2016

#=color(blue)(2/x^(3)#

Explanation:

#(24x^2)/(12x^5)#

#=(24/12) xx (x^2)/(x^5)#

#=(cancel24/cancel12) xx (x^2)/(x^5)#

#=2xx (x^2)/(x^5)#

By property:
#color(blue)(a^m/a^n= a^(m-n)#

Applying the above to exponents of #x#:
#=2xx x^color(blue)((2-5))#

#=2xx x^color(blue)((-3))#

#=color(blue)(2/x^(3)#