How do you simplify #25/sqrt125#?

2 Answers
May 30, 2017

Answer:

#5/(sqrt(5)#

Explanation:

#25/sqrt(125)#

Let's rewrite the denominator.

#25/((sqrt(25))(sqrt(5)))#

Simplify

#25/(5(sqrt(5)))#

#5/(sqrt(5)#

Rationalise the denominator

#= frac(5)(sqrt(5)) cdot frac(sqrt(5))(sqrt(5))#

#= frac(5 sqrt(5))(5)#

#= sqrt(5)#

May 30, 2017

Answer:

#sqrt(5)#

Explanation:

We have: #frac(25)(sqrt(125))#

Let's express the denominator as a product:

#= frac(25)(sqrt(5^(2) cdot 5))#

#= frac(25)(5 sqrt(5))#

#= frac(5)(sqrt(5))#

Then, let's rationalise the denominator:

#= frac(5)(sqrt(5)) cdot frac(sqrt(5))(sqrt(5))#

#= frac(5 sqrt(5))(5)#

#= sqrt(5)#