How do you simplify #((2k-2)!) /( 2k!)#?

1 Answer
Nov 10, 2015

I found: #1/(2k(2k-1))#

Explanation:

I tried considering that:
#k! =k*(k-1)!#
Rearranging your expression I got:
#((2k-2)!)/(2k!)=(cancel((2k-2))cancel((2k-3)!))/(2k(2k-1)cancel((2k-2))cancel((2k-3)!))=1/(2k(2k-1))#
I tried with #k=5#
#((2k-2)!)/(2k!)=(8!)/(10!)=0.0bar1#
and:
#1/(2k(2k-1))=1/(10*9)=0.0bar1#