How do you simplify #2sqrt276 - 4sqrt3#?

1 Answer
Apr 20, 2017

See the solution process below:

Explanation:

We can rewrite this expression using this rule for radicals:

#sqrt(a * b) = sqrt(a) * sqrt(b)#

#2sqrt(276) - 4sqrt(3) => 2sqrt(3 * 92) - 4sqrt(3) => 2sqrt(3)sqrt(92) - 4sqrt(3)#

We can now factor a #2sqrt(3)# from each term giving:

#2sqrt(3)sqrt(92) - 4sqrt(3) => 2sqrt(3)sqrt(92) - (2 * 2sqrt(3)) =>#

#2sqrt(3)(sqrt(92) - 2)#