How do you simplify #(2sqrt3)/(1 -sqrt3)#?

1 Answer
Jul 26, 2018

#-6sqrt3#

Explanation:

#(2sqrt3)/(1-sqrt3)#

Multiply numerator and denominator by #color(blue)(1+sqrt3)#:
#(2sqrt3)/(1-sqrt3) color(blue)(*(1+sqrt3)/(1+sqrt3))#

Combine and simplify:
#=(2sqrt3 * 2sqrt3^2)/(1+sqrt3-sqrt3-sqrt3^2)#

#=(2sqrt3*(2*3))/(1-3)#

#=(2sqrt3*6)/-2#

#=(12sqrt3)/-2#

#=-6sqrt3#

Hope this helps!