How do you simplify #2sqrt5 *3sqrt10 #?

2 Answers
Sep 6, 2015

Answer:

#30sqrt(2)#

Explanation:

#color(red)(2sqrt(5))*color(blue)(3sqrt(10))#

#= color(red)(2)*color(blue)(3)*color(red)(sqrt(5))*color(blue)(sqrt(10))#

#= 6* color(green)(sqrt(50))#

#= 6* color(green)(sqrt(25)*sqrt(2))#

#=6*color(green)(5sqrt(2))#

#=30sqrt(2)#

Sep 6, 2015

Answer:

I found: #30sqrt(2)#

Explanation:

You can write:
#2sqrt(5)*3sqrt(5*2)=(2*3)sqrt(5)sqrt(5)sqrt(2)=#
Multiply:
#=6*5*sqrt(2)=#
Where you used the faxt that #sqrt(x)sqrt(x)=x#.

So: #2sqrt(5)*3sqrt(10)=30sqrt(2)#