How do you simplify #(- 2x ^ { - 3} y ^ { 2} ) ^ { 3}#?

1 Answer
Jun 11, 2018

See a solution process below:

Explanation:

First, use this rule of exponents to rewrite the term within the parenthesis;

#a = a^color(red)(1)#

#(-2x^-3y^2)^3 => (-2^color(red)(1)x^-3y^2)^3#

Next, use this rule of exponents to eliminate the parenthesis:

#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#(-2^color(red)(1)x^color(red)(-3)y^color(red)(2))^color(blue)(3) => -2^(color(red)(1)xxcolor(blue)(3))x^(color(red)(-3)xxcolor(blue)(3))y^(color(red)(2)xxcolor(blue)(3)) => -2^3x^-9y^6 => -8^3x^-9y^6#

Now, use this rule of exponents to eliminate the negative exponent:

#x^color(red)(a) = 1/x^color(red)(-a)#

#-8^3x^color(red)(-9)y^6 => -8^3(1/x^color(red)(- -9))y^6 => -8^3(1/x^color(red)(9))y^6 => -(8^3y^6)/x^9#