How do you simplify #2x ^ { 9} v ^ { 5} \cdot 3v ^ { 8} \cdot 4x#?

1 Answer
Sep 16, 2017

See a solution process below:

Explanation:

FIrst, rewrite the expression as:

#(2 * 3 * 4)(x^9 * x)(v^5 * v^8) =>#

#24(x^9 * x)(v^5 * v^8)#

Next, use this rule of exponents to rewrite the #x# term:

#a = a^color(blue)(1)#

#24(x^9 * x^color(blue)(1))(v^5 * v^8)#

Now, use this rule of exponents to complete the simplification:

#x^color(red)(a) xx x^color(blue)(b) = x^(color(red)(a) + color(blue)(b))#

#24(x^color(red)(9) * x^color(blue)(1))(v^color(red)(5) * v^color(blue)(8)) =>#

#24x^(color(red)(9)+color(blue)(1))v^(color(red)(5)+color(blue)(8)) =>#

#24x^10v^13#