How do you simplify #( 3a b ^ { 2} ) ^ { - 3}#?

1 Answer
Jun 22, 2017

See a solution process below:

Explanation:

Use these two rules of exponents to simplify the expression:

#a = a^color(red)(1)# and #(x^color(red)(a))^color(blue)(b) = x^(color(red)(a)xxcolor(blue)(b))#

#(3ab^2)^-3 => (3^color(red)(1)a^color(red)(1)b^color(red)(2))^color(blue)(-3) => 3^(color(red)(1)xxcolor(blue)(-3))a^(color(red)(1)xxcolor(blue)(-3))b^(color(red)(2)xxcolor(blue)(-3)) =>#

#3^-3a^-3b^-6#

Now, use this rule of exponents to complete the simplification by eliminating the negative exponent:

#x^color(red)(a) = 1/x^color(red)(-a)#

#3^color(red)(-3)a^color(red)(-3)b^color(red)(-6) => 1/(3^color(red)(- -3)a^color(red)(- -3)b^color(red)(- -6)) => 1/(3^3a^3b^6) =>#

#1/(27a^3b^6)#