How do you simplify #(- 3a b ^ { 5} c ^ { 3} d ^ { 2} ) ^ { 3}#?

1 Answer
Apr 19, 2017

See the entire solution process below:

Explanation:

Use these two rules of exponents to simplify this expression:

#a = a^color(red)(1)# and #(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#(-3ab^5c^3d^2)^3 = (-3^color(red)(1)a^color(red)(1)b^color(red)(5)c^color(red)(3)d^color(red)(2))^color(blue)(3) =#

#-3^(color(red)(1) xx color(blue)(3))a^(color(red)(1) xx color(blue)(3))b^(color(red)(5) xx color(blue)(3))c^(color(red)(3) xx color(blue)(3))d^(color(red)(2) xx color(blue)(3)) = -3^3a^3b^15c^9d^6 =#

#-27a^3b^15c^9d^6#