# How do you simplify (-3x - 9)/-3?

Jan 23, 2018

$x + 3$

#### Explanation:

$\text{each term on the numerator is divided by } - 3$

$\Rightarrow \frac{- 3 x}{- 3} + \frac{- 9}{- 3}$

$= \frac{\cancel{- 3} x}{\cancel{- 3}} + {\cancel{- 9}}^{3} / {\cancel{- 3}}^{1}$

$= x + 3$

Jan 23, 2018

(-3x-9)/(-3)=color(blue)(x+3

#### Explanation:

Simplify:

$\frac{- 3 x - 9}{- 3}$

Factor out the common term $3$ in the numerator.

$\frac{- 3 \left(x + 3\right)}{- 3}$

Two negatives make a positive.

$\frac{3 \left(x + 3\right)}{3}$

Cancel $3$ in the numerator and denominator.

$\frac{{\textcolor{red}{\cancel{\textcolor{b l a c k}{3}}}}^{1} \left(x + 3\right)}{\textcolor{red}{\cancel{\textcolor{b l a c k}{3}}}} ^ 1$

Simplify.

$x + 3$

Or.....
you can simply see that both the terms on the numerator are divisible by 3.... that is the denominator

Simply
$\frac{a \pm b}{c} = \frac{a}{c} \pm \frac{b}{c}$
Or...
$\frac{- 3 x - 9}{- 3} = \frac{\cancel{- 3} x}{\cancel{- 3}} - {\cancel{9}}^{-} \frac{3}{\cancel{- 3}}$
Which gives
$x - \left(- 3\right)$
$x + 3$