How do you simplify #(-3x - 9)/-3#?

2 Answers
Jan 23, 2018

Answer:

#x+3#

Explanation:

#"each term on the numerator is divided by "-3#

#rArr(-3x)/(-3)+(-9)/(-3)#

#=(cancel(-3) x)/cancel(-3)+cancel(-9)^3/cancel(-3)^1#

#=x+3#

Jan 23, 2018

Answer:

#(-3x-9)/(-3)=color(blue)(x+3#

Explanation:

Simplify:

#(-3x-9)/(-3)#

Factor out the common term #3# in the numerator.

#(-3(x+3))/(-3)#

Two negatives make a positive.

#(3(x+3))/3#

Cancel #3# in the numerator and denominator.

#(color(red)cancel(color(black)(3))^1(x+3))/color(red)cancel(color(black)(3))^1#

Simplify.

#x+3#

[Edit]

Or.....
you can simply see that both the terms on the numerator are divisible by 3.... that is the denominator

Simply
#(a+-b)/c=a/c+-b/c#
Or...
#(-3x-9)/(-3)=(cancel(-3) x)/(cancel(-3)) -cancel9^-3/cancel(-3)#
Which gives
#x-(-3)#
#x+3#