How do you simplify #(4+2i)/(1-i)#?

1 Answer
Feb 5, 2016

Answer:

#(4+2i)/(1-i) = 1+3i#

Explanation:

Given
#color(white)("XXX")(4+2i)/(1-i)#

Multiply numerator and denominator by the complex conjugate of the denominator
#color(white)("XXX")(4+2i)/(1-i) xx (1+i)/(1+i)#

#color(white)("XXX")=(4+2i+4i+2i^2)/(1-i^2#

#color(white)("XXX")=(4+6i-2)/(1-(-1))#

#color(white)("XXX")=(2+6i)/2#

#color(white)("XXX")=1+3i#