How do you simplify #(4+9i)/(12i)#?

1 Answer
Oct 4, 2016

#3/4-1/3i#

Explanation:

We require to make the denominator of the fraction real.

We can do this by multiplying numerator/denominator by i.

That is : #(4+9i)/(12i)xxi/i=(4i+9i^2)/(12i^2)#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(a/a)color(black)(i^2=(sqrt(-1))^2=-1)color(white)(a/a)|)))#

#rArr(4i+9i^2)/(12i^2)=(4i-9)/(-12)=(-9)/(-12)+(4i)/(-12)#

#rArr(4+9i)/(12i)=3/4-1/3i#