How do you simplify #4b(-5b-3)-2(b^2-7b-4)#?

1 Answer
Jan 8, 2017

First, expand the terms in parenthesis, then group like terms finally combine the like terms. See full simplification process below:

Explanation:

First we will expand the terms in parenthesis:

#color(red)(4b)(-5b - 3) - color(blue)(2)(b^2 - 7b - 4) ->#

#(color(red)(4b) xx -5b) + (color(red)(4b) xx -3) - (color(blue)(2) xx b^2) - (color(blue)(2) xx -7b) - (color(blue)(2) xx -4) ->#

#(-20b^2) + (-12b) - (2b^2) - (-14b) - (-8) ->#

#-20b^2 - 12b - 2b^2 + 14b + 8#

Next step is to group like terms:

#-20b^2 - 2b^2 - 12b + 14b + 8#

Now, to complete the simplification we combine the like terms:

#(-20 - 2)b^2 + (-12 + 14)b + 8#

#-22b^2 + 2b + 8#