How do you simplify #(4sqrtx+1)(3sqrtx+2)#?

1 Answer
May 18, 2017

See a solution process below:

Explanation:

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

#(color(red)(4sqrt(x)) + color(red)(1))(color(blue)(3sqrt(x) + color(blue)(2))# becomes:

#(color(red)(4sqrt(x)) xx color(blue)(3sqrt(x))) + (color(red)(4sqrt(x)) xx color(blue)(2)) + (color(red)(1) xx color(blue)(3sqrt(x))) + (color(red)(1) xx color(blue)(2))#

#12(sqrt(x))^2 + 8sqrt(x) + 3sqrt(x) + 2#

#12x + 8sqrt(x) + 3sqrt(x) + 2#

We can now combine like terms:

#12x + (8 + 3)sqrt(x) + 2#

#12x + 11sqrt(x) + 2#