How do you simplify #(4x^2y- 3xy^2) - (3x^2y -8xy^2#)?

2 Answers
Feb 22, 2017

See the entire simplification process below:

Explanation:

First, remove the individual terms from parenthesis. Be careful to handle the signs of the individual terms correctly:

#4x^2y - 3xy^2 - 3x^2y + 8xy^2#

Next, group like terms:

#4x^2y - 3x^2y - 3xy^2 + 8xy^2#

Now, combine like terms:

#(4 - 3)x^2y + (-3 + 8)xy^2#

#1x^2y + 5xy^2#

#x^2y + 5xy^2#

Or, factoring out an #xy# from each term:

#xy(x + 5y)#

Feb 22, 2017

#x^2y+5xy^2#

Explanation:

The first step is to write the expression without brackets.

#rArr1(color(red)(4x^2y)color(blue)(-3xy^2))-1(color(red)(3x^2y)color(blue)(-8xy^2))#

distribute brackets and collect like terms. I have colour-coded the like terms.

#=color(red)(4x^2y)color(blue)(-3xy^2)color(red)(-3x^2y)-(color(blue)(-8xy^2))#

#=color(red)(4x^2y)-color(red)(3x^2y)-color(blue)(3xy^2)+color(blue)(8xy^2)#

#=x^2y+5xy^2#