First, use this rule of exponents to rewrite the expression: #a = a^color(red)(1)#
#(-5h^4j^-4k^3)^5 => (-5^color(red)(1)h^4j^-4k^3)^5#
Next, use this rule of exponents to eliminate the outer exponent:
#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#
#(-5^color(red)(1)h^color(red)(4)j^color(red)(-4)k^color(red)(3))^color(blue)(5) => -5^(color(red)(1)xxcolor(blue)(5))h^(color(red)(4)xxcolor(blue)(5))j^(color(red)(-4)xxcolor(blue)(5))k^(color(red)(3)xxcolor(blue)(5)) =>#
#-5^5h^20j^-20k^15 => -3125h^20j^-20k^15#
Now, use this rule of exponents to eliminate the negative exponent:
#x^color(red)(a) = 1/x^color(red)(-a)#
#-3125h^20j^color(red)(-20)k^15 => (-3125h^20k^15)/j^color(red)(-
-20) =>#
#(-3125h^20k^15)/j^color(red)(20)#