How do you simplify #(- 5h ^ { 4} j ^ { - 4} k ^ { 3} ) ^ { 5}#?

1 Answer
Aug 4, 2017

See a solution process below:

Explanation:

First, use this rule of exponents to rewrite the expression: #a = a^color(red)(1)#

#(-5h^4j^-4k^3)^5 => (-5^color(red)(1)h^4j^-4k^3)^5#

Next, use this rule of exponents to eliminate the outer exponent:

#(x^color(red)(a))^color(blue)(b) = x^(color(red)(a) xx color(blue)(b))#

#(-5^color(red)(1)h^color(red)(4)j^color(red)(-4)k^color(red)(3))^color(blue)(5) => -5^(color(red)(1)xxcolor(blue)(5))h^(color(red)(4)xxcolor(blue)(5))j^(color(red)(-4)xxcolor(blue)(5))k^(color(red)(3)xxcolor(blue)(5)) =>#

#-5^5h^20j^-20k^15 => -3125h^20j^-20k^15#

Now, use this rule of exponents to eliminate the negative exponent:

#x^color(red)(a) = 1/x^color(red)(-a)#

#-3125h^20j^color(red)(-20)k^15 => (-3125h^20k^15)/j^color(red)(- -20) =>#

#(-3125h^20k^15)/j^color(red)(20)#