How do you simplify #(5sqrt3)/(6sqrt10)#?
1 Answer
Mar 23, 2018
Explanation:
#"using the "color(blue)"laws of radicals"#
#•color(white)(x)sqrtaxxsqrtbhArrsqrt(ab)#
#•color(white)(x)sqrtaxxsqrta=a#
#"to simplify we require to remove the radical from the "#
#"denominator"#
#"this is achieved by multiplying numerator/denominator"#
#"by "sqrt10#
#rArr(5sqrt3)/(6sqrt10)xxsqrt10/sqrt10#
#=(5xxsqrt(3xx10))/(6xxsqrt(10xx10))#
#=(5xxsqrt30)/(6xxsqrt100)=(cancel(5)^1xxsqrt30)/(cancel(60)^(12))=sqrt30/12#