We essentially have the following
#color(blue)(5)color(lime)(sqrt3)*color(blue)(6)color(lime)(sqrt10)-color(blue)(5)color(lime)(sqrt3)*color(blue)(6)color(lime)(sqrt3)#
Which can be simplified if we multiply the integers and square roots together, respectively. We'll get
#color(blue)((5*6))color(lime)(sqrt3sqrt10)-color(blue)((5*6))color(lime)(sqrt3sqrt3)#
Which simplifies to
#color(blue)(30)color(lime)(sqrt30)-color(blue)(30)*color(lime)(3)#
#=>color(blue)(30)color(lime)(sqrt30)-90#
Since #30# has no perfect square factors, we cannot simplify the radical any further. We can factor a #30# out of both terms, however. We get
#30(sqrt30-3)#
Hope this helps!