How do you simplify #(5x10^2)(3x10^-3)#?

1 Answer
Feb 3, 2015

I assume the x's are meant as multiplication signs?

Step 1:
Multiply the numbers and the 10-powers separately:
#(5*10^2)(3*10^-3)=(5*3)(10^2*10^-3)#

Step 2:
Multiply the numbers:
#(5*3)(10^2*10^-3)=15*(10^2*10^-3)#

Step 3:
Add the powers of the 10's
#15*(10^2*10^-3)=15*(10^(2+ -3))=15*10^-1#

Step 4:
Put the negative power under the division line and simplify further:
#15*10^-1=15/10^1=15/10=1.5#
In correct scientific notation this would be #1.5*10^0#