How do you simplify #(6+3i)/(2-i)#?
1 Answer
Apr 21, 2016
Explanation:
Require to rationalise the denominator of the fraction. To do this we multiply numerator/denominator by the
# color(blue)" complex conjugate ""of the denominator" # If
#color(blue)" a± bi ""is a complex number"# then
#color(red) "a ∓ bi ""is it's conjugate"# Note that the 'real part'(a) remains unchanged, while the sign of the 'imaginary part' changes.
Note also :
#color(blue)"(a + bi)"color(red)"(a-bi)"=a^2+b^2" a real number"# using the fact
#[ i^2 =(sqrt(-1))^2 = -1 ] # here the conjugate of 2 - i is 2 + i
#rArr (6+3i)/(2-i) = ((6+3i)(2+i))/((2-i)(2+i))=(12+12i-3)/(4+1)#
#=(9+12i)/5 = 9/5 + 12/5 i #