How do you simplify #(6+3i)/(2-i)#?

1 Answer
Apr 21, 2016

# 9/5 +12/5 i #

Explanation:

Require to rationalise the denominator of the fraction. To do this we multiply numerator/denominator by the# color(blue)" complex conjugate ""of the denominator" #

If #color(blue)" a± bi ""is a complex number"#

then #color(red) "a ∓ bi ""is it's conjugate"#

Note that the 'real part'(a) remains unchanged, while the sign of the 'imaginary part' changes.

Note also : #color(blue)"(a + bi)"color(red)"(a-bi)"=a^2+b^2" a real number"#

using the fact #[ i^2 =(sqrt(-1))^2 = -1 ] #

here the conjugate of 2 - i is 2 + i

#rArr (6+3i)/(2-i) = ((6+3i)(2+i))/((2-i)(2+i))=(12+12i-3)/(4+1)#

#=(9+12i)/5 = 9/5 + 12/5 i #