How do you simplify #(7-4i)+(8+6i)#? Precalculus Complex Numbers in Trigonometric Form Complex Number Plane 1 Answer Daniel L. · mason m Nov 22, 2015 #(7-4i)+(8-6i)=15+2i# Explanation: To add two complex numbers you add their real and imaginary parts : #(7-4i)+(8+6i)=(7+8)+(-4i+6i)=15+2i# Answer link Related questions What is the complex number plane? Which vectors define the complex number plane? What is the modulus of a complex number? How do I graph the complex number #3+4i# in the complex plane? How do I graph the complex number #2-3i# in the complex plane? How do I graph the complex number #-4+2i# in the complex plane? How do I graph the number 3 in the complex number plane? How do I graph the number #4i# in the complex number plane? How do I use graphing in the complex plane to add #2+4i# and #5+3i#? How do I use graphing in the complex plane to subtract #3+4i# from #-2+2i#? See all questions in Complex Number Plane Impact of this question 2704 views around the world You can reuse this answer Creative Commons License