How do you simplify #(a^-1+b^-1)/(a^-2+b^-2)#?

1 Answer
Sep 6, 2016

#(ab(a+b))/(a^2+b^2)#

Explanation:

Write the terms as fractions and then add them.

#(a^-1+b^-1)/(a^-2+b^-2) " = "(1/a + 1/b)/((1/a^2 + 1/b^2)#

Find common denominators and make equivalent fractions:

#((b+a)/(ab))/((b^2+a^2)/(a^2b^2))color(white)(xxxxxxxxxxx)rarr (a/b)/(c/d) = (axxd)/(bxxc)#

= #((b+a)xx(a^2b^2))/((ab)(b^2+a^2))#

=#(ab(a+b))/(a^2+b^2)#