How do you simplify #((a-2)!) / (a!)#?

1 Answer
Nov 20, 2015

#((a-2)!)/(a!) = 1/(a^2-a)#

Explanation:

#((a-2)!)/(a!)#

#color(white)("XXX")= ((a-2)xx(a-3)xx...xx(1))/((a)xx(a-1)xx(a-2)xx(a-3)xx...xx(1))#

#color(white)("XXX")= (cancel((a-2))xxcancel((a-3))xx...xxcancel((1)))/((a)xx(a-1)xxcancel((a-2))xxcancel((a-3))xx...xxcancel((1)))#

#color(white)("XXX")=1/(axx(a-1))#

#color(white)("XXX") = 1/(a^2-a)#