How do you simplify #cos^2 (theta/2) − sin^2 (theta/2)#?

1 Answer
May 17, 2016

#costheta#

Explanation:

We will use the following identities:

  • #cos(theta/2)=sqrt((1+costheta)/2)#
  • #sin(theta/2)=sqrt((1-costheta)/2)#

Thus, substituting these into the expression, we get:

#cos^2(theta/2)-sin^2(theta/2)=(sqrt((1+costheta)/2))^2-(sqrt((1-costheta)/2))^2#

#=(1+costheta)/2-(1-costheta)/2#

#=(1+costheta-(1-costheta))/2#

#=(1-1+costheta+costheta)/2#

#=(2costheta)/2#

#=costheta#