How do you simplify #(cos^2x-4)/(cosx-2)#?

2 Answers
Mar 5, 2017

#{cos^2 x - 4}/{cos x - 2} = cos x + 2#

Explanation:

Just use the identity:

#a^2 - b^2 = (a+b)(a-b)#.

Then, we have:

#{cos^2 x - 4}/{cos x - 2} = {(cos x + 2) (cos x - 2)}/{cos x - 2} = cos x + 2#

Mar 5, 2017

#cosx+2#

Explanation:

Factorise the numerator as a #color(blue)"difference of squares"#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(a^2-b^2=(a-b)(a+b))color(white)(2/2)|)))#

#"here "a=cosx" and "b=2#

#rArrcos^2x-4=(cosx-2)(cosx+2)#

#rArr((cancel(cosx-2))(cosx+2))/cancel(cosx-2)#

#=cosx+2#