How do you simplify #Cos[(pi/2)-x]/sin[(pi/2)-x] #?

1 Answer
Feb 27, 2016

tanx

Explanation:

Expand numerator and denominator using appropriate #color(blue) " Addition formulae "#

#• cos(A ± B ) = cosAcosB ∓ sinAsinB #

#• sin(A ± B ) = sinAcosB ± cosAsinB #

#color(red) " Numerator "#
# cos( pi/2 - x ) = cos(pi/2)cosx + sin(pi/2)sinx #

now #cos(pi/2) = 0 " and " sin(pi/2) = 1 #

simplifies to : 0 + sinx = sinx

#color(orange) " Denominator " #

#sin(pi/2 - x ) = sin(pi/2)cosx + cos(pi/2)sinx #

simplifies to : cosx + 0 = cosx

#rArr cos(pi/2 -x )/sin(pi/2 -x) = sinx/cosx = tanx#