First, compute #cos(4theta)#
#cos(4theta)=cos(2theta+2theta)#
#=cos(2theta)cos(2theta)-sin(2theta)sin(2theta)#
#=(cos^2theta-sin^2theta)^2-(2sinthetacostheta)^2#
#=cos^4theta-2cos^2thetasin^2theta+sin^4theta-4sin^2thetacos^2theta#
#=cos^4theta-6sin^2thetacos^2theta+sin^4theta#
#=cos^4theta-6(1-cos^2theta)cos^2theta+(1-cos^2theta)^2#
#=cos^4theta-6cos^2theta+6cos^4theta+1-2cos^2theta+cos^4theta#
#=1-8cos^2theta+8cos^4theta#
Then, compute #cot(2theta)#
#cot(2theta)=1/tan(2theta)=1/((2tantheta)/(1-tan^2theta))#
#=(1-tan^2theta)/(2tantheta)#
#=1/(2tantheta)-1/2tantheta#
#=1/2cottheta-1/(2cottheta)#
#=1/2((cot^2theta-1)/(cottheta))#
Finally,
#cos(4theta)-cot(2theta)=1-8cos^2theta+8cos^4theta-1/2((cot^2theta-1)/(cottheta))#