How do you simplify #e^x*5e^(x+3)#?

1 Answer
Jul 11, 2016

Answer:

#e^x*5e^(x+3)=5e^(2x+3)#

Explanation:

If you multiply powers with equal base you have to add their exponents:

#a^b*a^c=a^(b+c)#

So after putting number #5# in front you get the result:

#e^x*5e^(x+3)= 5*e^x*e^(x+3)#

#=5e^(x+x+3)=5e^(2x+3)#