How do you simplify #f(theta)=csc2theta-sec2theta-3tan2theta# to trigonometric functions of a unit #theta#?

1 Answer
Apr 30, 2018

#f(theta)=(cos^2theta-sin^2theta-2costhetasintheta-4sin^2thetacos^2theta)/(2sinthetacos^3theta-sin^3thetacostheta)#

Explanation:

First, rewrite as:#f(theta)=1/sin(2theta)-1/cos(2theta)-sin(2theta)/cos(2theta)#

Then as:
#f(theta)=1/sin(2theta)-(1-sin(2theta))/cos(2theta)=(cos(2theta)-sin(2theta)-sin^2(2theta))/(sin(2theta)cos(2theta))#

We will use:
#cos(A+B)=cosAcosB-sinAsinB#
#sin(A+B)=sinAcosB+cosAsinB#

So, we get:
#f(theta)=(cos^2theta-sin^2theta-2costhetasintheta-4sin^2thetacos^2theta)/((2sinthetacostheta)(cos^2theta-sin^2theta))#

#f(theta)=(cos^2theta-sin^2theta-2costhetasintheta-4sin^2thetacos^2theta)/(2sinthetacos^3theta-sin^3thetacostheta)#