How do you simplify #f( x ) = 2( 4x - 5) + 4( 4x + 14)#?

2 Answers
Aug 13, 2017

See a solution process below:

Explanation:

First, expand the terms within parenthesis by multiplying each term within the parenthesis by the term outside the parenthesis:

#f(x) = color(red)(2)(4x - 5) + color(blue)(4)(4x + 14)#

#f(x) = (color(red)(2) xx 4x) - (color(red)(2) xx 5) + (color(blue)(4) xx 4x) + (color(blue)(4) xx 14)#

#f(x) = 8x - 10 + 16x + 56#

Next, group like terms on the right side of the function:

#f(x) = 8x + 16x - 10 + 56#

Now, combine like terms:

#f(x) = (8 + 16)x + (-10 + 56)#

#f(x) = 24x + 46#

Aug 13, 2017

#f(x)=color(green)(24x+46)#

Explanation:

Using the distributive law:
#color(white)("XXX")2(4x-5) =2xx4x -2xx5#
#color(white)("XXXXXXXXX")=8x-10#
and
#color(white)("XXX")4(4x+14)=4xx4x+4xx14#
#color(white)("XXXXXXXXX")=16x+56#

So,
#color(white)("XXX")2(4x-5)+4(4x+14)#
#color(white)("XXXXXXXXX")=8x-10+16x+56#

then combining like terms
#color(white)("XXXXXXXXX")=8x+16x-10+56#

#color(white)("XXXXXXXXX")=24x+46#