How do you simplify #[\frac { 12x ^ { 8} y ^ { 3} } { 9x ^ { - 3} y ^ { 5} } ]#?

1 Answer
Oct 3, 2017

See a solution process below:

Explanation:

First, rewrite the expression as:

#12/9(x^8/x^-3)(y^3/y^5) =>#

#(3 xx 4)/(3 xx 3)(x^8/x^-3)(y^3/y^5) =>#

#(color(red)(cancel(color(black)(3))) xx 4)/(color(red)(cancel(color(black)(3))) xx 3)(x^8/x^-3)(y^3/y^5) =>#

#4/3(x^8/x^-3)(y^3/y^5)#

Next, use this rule of exponents to simplify the #x# terms:

#x^color(red)(a)/x^color(blue)(b) = x^(color(red)(a)-color(blue)(b))#

#4/3(x^color(red)(8)/x^color(blue)(-3))(y^3/y^5) =>#

#4/3x^(color(red)(8)-color(blue)(-3))(y^3/y^5) =>#

#4/3x^(color(red)(8)+color(blue)(3))(y^3/y^5) =>#

#4/3x^11(y^3/y^5) =>#

#(4x^11)/3(y^3/y^5)#

Now, use this rule of exponents to simplify the #y# terms:

#x^color(red)(a)/x^color(blue)(b) = 1/x^(color(blue)(b)-color(red)(a))#

#(4x^11)/3(y^color(red)(3)/y^color(blue)(5)) =>#

#(4x^11)/3 1/y^(color(blue)(5)-color(red)(3)) =>#

#(4x^11)/3 1/y^2 =>#

#(4x^11)/(3y^2) =>#