How do you simplify #\frac { - 14x ^ { 3} y ^ { 5} } { - 7x ^ { 6} y }#?

1 Answer
Nov 28, 2017

#(-14x^3y^5)/(-7x^6y)=color(blue)((2y^4)/(x^3)#

Refer to the explanation for the process.

Explanation:

Simplify:

#(-14x^3y^5)/(-7x^6y)#

Take out and divide the constants.

#(-14)/(-7)xx(x^3y^5)/(x^6y)# #larr# Two negatives make a positive.

Simplify.

#(2x^3y^5)/(x^6y)#

Apply the exponent quotient rule: #a^m/a^n=a^(m-n)#.
No exponent is understood to be #1#.

#(2x^(3-6)y^(5-1))#

Simplify.

#2x^(-3)y^4#

Apply negative exponent rule: #a^(-m)=1/a^m#.

#(2y^4)/(x^3)#

.